Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells


The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease. Retinal degenerative diseases linked to loss of RPE result in a substantial economic, social, and healthcare burden for individuals and governments worldwide.

Currently, no Food and Drug Administration (FDA) approved treatments exist for AMD. Importantly, AMD vision loss is linked to RPE cell atrophy; thus, transplant and replacement of the lost RPE with healthy and functional RPE cells might be a treatment for AMD and other retina diseases. Healthy functional RPE can be grown/differentiated from induced pluripotent stem cells. A graft of such RPE cells may potentially be implanted into the eye of AMD patients to restore vision or prevent vision loss.  However, methods for producing RPE cells for human therapy must be consistent, scalable and reliable. Generation and differentiation of clinical grade RPE under good laboratory practice (GLP) and good manufacturing practices (GMP) is critical for generating cells suitable for regulatory approval studies and for development of RPE cells for transplantation therapies. 

Researchers at the National Eye Institute (NEI),  and National Institute of Arthritis and Muscoskeletal and Skin Diseases (NIAMS) have developed a novel invention that includes a procedure/method to consistently produce clinical grade RPE cells from human induced pluripotent stem cells (iPSC). The RPE cells produced may be used for advancing transplantation therapy for AMD and other retinal degenerative diseases associated with the loss of RPE. 



Potential Commercial Applications: Competitive Advantages:
  • Producing RPE cells for commercial or research purposes
 
  • Clinical-grade process 
  • RPE cells for therapeutics or modeling


Development Stage:
Pre-clinical (in vivo)

Inventors:

Kapil Bharti (NEI)  ➽ more inventions...

Lucas Chase (NIAMS)  ➽ more inventions...

Xuezhu Feng ()  ➽ more inventions...

Balendu Jha ()  ➽ more inventions...


Intellectual Property:
Application No. 62/215,579
Application No. PCT/US2016/050543
Application No. 15/758,314
Application No. 2018-512373
Application No. 16766444.0
Application No. 2997952
Application No. 2016231170

Publications:
Miyagishimaa K, et al. In Pursuit of Authenticity: iPS Cell-derived RPE for Clinical Applications.  PMID 27400791
Miyagishimaa K, et al. A basis for comparison: sensitive authentication of stem cell derived RPE using physiological responses of intact RPE monolayers.  PMID 28286868

Collaboration Opportunity:

Licensing and research collaboration


Licensing Contact:
John Hewes, Ph.D.
Email: John.Hewes@nih.gov
Phone: 240-276-5515

OTT Reference No: E-212-2015
Updated: Aug 14, 2018